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Bringing Multigrid to the Masses
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Multigrid is Optimal: convergence rate is 
independent of discretization parameters

Multigrid methods use 
coarse grids to efficiently 
damp out smooth error
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We are developing geometric multigrid 
for semi-structured-grid problems

Grids are mostly—but not entirely—structured
Examples: block-structured grids, structured adaptive 
mesh refinement (AMR) grids, overset grids 

Basic idea: exploit grid 
structure where present

Focusing now on solvers  
for AMR (for APDEC)
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We are developing parallel Fast Adaptive 
Composite Grid (FAC) methods for AMR

AMR application developers have had little 
linear solver library support
— Usually have to “roll their own” solvers
— Currently hypre is being used for level & bottom 

solves
FAC was designed specifically for AMR 
(McCormick)
— Utilizes the grid hierarchy
— Involves so-called “level solves”Library design issue:

solvers like FAC require 
(additional) information 
about structure
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Semi-structured grid interface (SEMI) is 
our vehicle to deliver FAC… and more

SEMI is one of hypre’s
conceptual interfaces
AMG, ILU, already available
Currently used by ASCI for 
block-structured apps

Augmenting for AMR users
— more natural way of handling 

coarse-fine boundaries
Releasing a spec & impl
— De facto standard
— PETSc solver availability
— CTS2 component

A block-structured grid with 
3 variable types and 3 
discretization stencils
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We are interacting closely with APDEC

Integration into Chombo is in progress
— hypre level / bottom solvers available
— Some performance issues to be resolved

Implementing parallel FAC code
— Works in serial; finishing up for parallel

Developing FAC for anisotropic problems
— Needed for fusion applications

New non-Galerkin option in PFMG for level 
solves
— Retains discretization stencil on all MG levels
— Reduces storage requirements
— 2x speedup in 2D; expect even more in 3D

Constant-coefficient solvers

(3,2)

(2,3) (6,6)
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First release of hypre featuring the Babel 
language interoperability tool 

Babel provides:
— language interoperability
— OO support

Beta release 1.8.0b uses 
Babel for two major 
interface classes:
— IJ system builders
— ParCSR solvers (e.g., AMG)

Long term plan: Migrate all hypre interfaces to Babel 
to improve and expand language support
Babel / SIDL crucial for PETSc-hypre interoperability 
plans and CTS2 interactions

C

C++

F77
F90

Python
Java
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We are speeding up tokamak simulations 
through PETSc-hypre combo

CEMM’s M3D code is built upon 
PETSc’s distributed data structures

hypre’s AMG solver (via PETSc) is 
now speeding up simulations
— Perfect iteration scaling
— Still performance issues to resolve
— Time is halved or better for large runs
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We are generalizing our AMG framework 
to address new problem classes

Maxwell and Helmholtz problems have huge near 
null spaces and require more than pointwise 
smoothing to achieve optimality in multigrid

Our new theory allows for any type of smoother, and 
also works for a variety of coarsening approaches
(e.g., vertex-based, cell-based, agglomeration)
A paper is in the works (will submit any day now)

Model of a section of the Next 
Linear Collider structure Resonant frequencies in 

a Helmholtz Application
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The new theory separates construction of 
coarse-grid correction into two parts

The following measures the ability of a given coarse 
grid Ωc to represent algebraically smooth error:

Theorem: (1) Assume that µ* ≤ K for some constant K.
(2) Assume that any one of the following holds for η ≥ 1:

Then, µ(PR, e) ≤ ηK, ∀e.
(1) insures coarse grid quality – use CR
(2) insures interpolation quality – necessary condition!
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CR is an efficient method for measuring 
the quality of the set of coarse variables

CR (Brandt, 2000) is a modified relaxation scheme 
that keeps the coarse-level variables, Ru, invariant
We have defined several variants of CR, and shown 
that fast converging CR implies a good coarse grid:

Hence, CR can be used as a tool to efficiently 
measure the quality of a coarse grid!
General idea: If CR is slow to converge, either increase 
the size of the coarse grid or modify relaxation
F-relaxation is a specific instance of CR
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Using CR to choose the coarse grid

Initialize U-pts

Do CR and redefine 
U-pts as points 
slow to converge

Select new C-pts as 
indep. set over U
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Using CR to choose the coarse grid

Initialize U-pts

Do CR and redefine 
U-pts as points 
slow to converge

Select new C-pts as 
indep. set over U


